Local Differentially Private Fuzzy Counting in Stream Data Using Probabilistic Data Structures

نویسندگان

چکیده

Privacy-preserving estimation of counts items in streaming data finds applications several real-world scenarios including word auto-correction and traffic management applications. Recent works RAPPOR [1] Apple's count-mean sketch (CMS) algorithm [2] propose privacy preserving mechanisms for count large volumes using probabilistic structures like counting Bloom filter CMS. However, these existing methods fall short providing a sound solution real-time Since the size structure is not adaptive to volume data, utility (accuracy estimate) can suffer over time due increased false positive rates. Further, lookup operation needs be highly efficient answer estimate queries real-time. More importantly, local Differential used approaches provide guarantees come at cost (impacting accuracy estimation). In this work, we novel (local) Differentially private mechanism that provides high problem with similar or even lower budgets while providing: a) fuzzy report related (for instance account typing errors variations), b) improved querying efficiency reduce response counts. Our algorithm uses combination two Cuckoo filter. We formal proofs present extensive experimental evaluation our real synthetic English words datasets both exact scenarios. substantially outperforms prior work terms time, significantly higher estimation) under guarantees, communication overhead.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stream Clustering using Probabilistic Data Structures

Most density based stream clustering algorithms separate the clustering process into an online and offline component. Exact summarized statistics are being employed for defining micro-clusters or grid cells during the online stage followed by macro-clustering during the offline stage. This paper proposes a novel alternative to the traditional two phase stream clustering scheme, introducing sket...

متن کامل

Differentially Private Local Electricity Markets

Privacy-preserving electricity markets have a key role in steering customers towards participation in local electricity markets by guarantying to protect their sensitive information. Moreover, these markets make it possible to statically release and share the market outputs for social good. This paper aims to design a market for local energy communities by implementing Differential Privacy (DP)...

متن کامل

pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)

فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...

15 صفحه اول

On Differentially Private Longest Increasing Subsequence Computation in Data Stream

Many important applications require a continuous computation of statistics over data streams. Activities monitoring, surveillance and fraud detections are some settings where it is crucial for the monitoring applications to protect user’s sensitive information in addition to efficiently compute the required statistics. In the last two decades, a broad range of techniques for time-series and str...

متن کامل

Fuzzy retrieval of encrypted data by multi-purpose data-structures

The growing amount of information that has arisen from emerging technologies has caused organizations to face challenges in maintaining and managing their information. Expanding hardware, human resources, outsourcing data management, and maintenance an external organization in the form of cloud storage services, are two common approaches to overcome these challenges; The first approach costs of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2022

ISSN: ['1558-2191', '1041-4347', '2326-3865']

DOI: https://doi.org/10.1109/tkde.2022.3198478